第7回 トップの素材について

グラスムクトップは浮力がない、グラスムクトップはエサを背負わないという言葉を聞く ことがないだろうか。この表現は適切ではないと思っている。

今回から、誤解の多いトップについて、素材による違いやトップの選び方、トップの塗り等、 複数回に分けて解説していきたいと思う。

今回は前提となる素材の種類や比重、アルキメデスの原理について、解説していきたい。

1. トップの素材について

トップは大別して、パイプとムクの2つのカテゴリーに分類される。

パイプは、トップの中に空気が入っている。ムクは素材のみで、中に空気は入っていない。パイプの太さには、細い順で、特細 (元径 1.0mm) →極細 (元径 1.2mm) →細 (元径 1.4mm) →中細 (元径 1.6mm) →太 (元径 1.8mm) →極太 (元径 2.0mm) の種類がある。新たに、特細 (元径 1.0mm) が加わった。この呼び名は、メーカーによって異なる場合がある。また、素材の違いにより、表 1 のように分類することができる。

パイプの素材は、以前「セル」や「パール」といったものがあったが、現在はほとんど姿消してしまった。また、釣り人の間でよく言われる「ハイテクトップ」というのは、ポリカーボネイトトップを最初に発売した(株)リコーサーバンスの商品名である。

(表1)

No.	大分類	中分類	特徴
1	パイプ	ポリカーボネイ	① 長所は、熱に強く、曲がりがほとんどない。素材の
		F	バラツキも少なく、丈夫で折れにくい。チョーチン
			釣りで、竿先にトップが当たっても破損が少ない。
			② 短所は、表面がツルツルで塗料の食い付きが悪いた
			め、トップの塗装の前に表面を荒らす必要がある。
			素材そのものは、白くないため、トップの塗装前に
			下地塗装が必要である。
2	ムク	グラスソリッド	① 長所は、素材自体が硬くはりがあるので、ロングト
			ップに使用しても、水切れがよい。また、加工しや
			く、一般的な釣具店で購入が可能である。
			② 短所は、比重が素材の中で一番重いため、その特性
			生かすような使用が必要である。
		ポリカーボネイ	グラスソリッドより、比重が軽く、パイプとグラスソリ
		ト (略称 PC)	ッドの中間のような特性を持つ。また、比重が軽いの

で、グラスソリッドよりも太いものが使用でき、視認性が向上できる。 短所は、①素材自体が柔らかいため、ロングトップに使用すると水切れが悪いこと、素材自体が柔らかいため、カッターでの加工は難しく、回転させて削りだす必要がある。また、この加工の際、熱による曲がりが発生する。

2. トップの素材の比重について

ご存知のとおり、水の比重は1で、これよりも重ければ水に沈み、軽ければ水に浮く。ヘラウキを構成する各パーツの比重を分析することにより、ウキの入りや復元力を深く理解することが可能になると考える。

表の右側には、書籍や Web サイトで調べた数値を参考として、掲載している。

No.	分類	比重	参考(書籍や Web
			サイトで調べた数
			值)
1	ポリカーボムク(PC ムク)	1.27	1.20
2	カーボン	1.40	1.80
3	グラスソリッド	1.91	2.50

3. アルキメデスの原理

「アルキメデスの浮力の原理」とは、「ウキへの荷重に対する変化量は、水面上に出たトップの容積によって決まり、水中のボディ形態、浮力、材質とは無関係である。」というものである。以下、具体的に見ていこう。

ウキのなじみ幅の違い比較

前提条件は、以下のとおり。

ボディの仕様がまったく同じで、トップの素材のみが異なるウキを浮かべ、ウキのなじみ幅 の違いを調べてみる。

ヘラウキの仕様

トップの素材を除く仕様は全て同じ。

ボディ:孔雀の羽根 2 枚合わせ、塗装前で 5. $5 \,\mathrm{mm}$ 径、 $80 \,\mathrm{mm}$ トップ:

- A) 極細パイプトップ 元径1.2 mm 先端径0.8 mm
- B) PC ムクトップ 元径1.2 mm 先端径0.8 mm

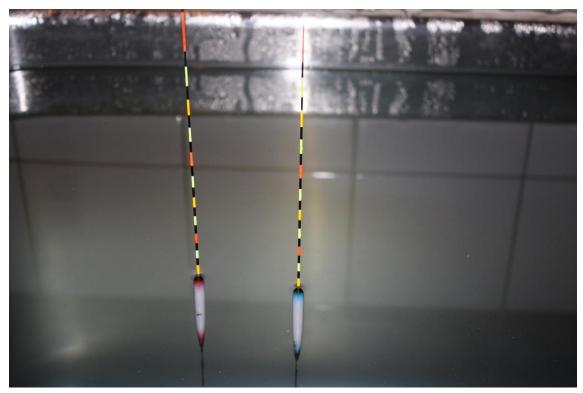

*A)、B) とも体積は全く同じになるよう加工

足:カーボン製、塗装前の状態で、 1. $0\,\mathrm{mm} \to 0$. $8\,\mathrm{mm} \to \hat{z}$ し込み部のみ 1. $0\,\mathrm{mm}$ に テーパーづけ

参考①:オモリ荷重A) パイプトップ:1. 20g、B) PCムクトップ:1. 18g

参考②:ウキ下からオモリまで、約20cm→浴槽にて実験

左側: P C ムクトップ、右側:パイプトップ


上記のウキにそれぞれ、下記のエサにみたてた粘土オモリをぶらさげてみる。

粘土オモリ2つで0. 40g

粘土オモリ1つで0.20g、従って、もうひとつの粘土オモリも0.20g

粘土オモリをつける前の状態、どちらもトップとボディの付け根でバランスしている。

粘土オモリ0.2gを付けた状態、トップ1節出しになっている。

上記の写真から、ウキA)、B)ともに、ほぼ同じナジミ幅を示す。つまり、トップの素材、パイプかPCといった素材に関係なく、同一体積であれば、同じナジミ幅を示すことがご理解いただけると思う。

次回は、素材の違いによるムクトップとパイプトップの違いについて、解説していきたい。